

LA-UR-21-21021

Approved for public release; distribution is unlimited.

Title: Overview of the Radiological Design of the New PF-4 Staging Gloveboxes

Author(s): Hetrick, Lucas Duane

Intended for: Presentation at LANL

Issued: 2021-02-04

Overview of the Radiological Design of the New PF-4 Staging Gloveboxes

Lucas D. Hetrick

February 10th, 2021

Outline

- Introduction
 - Purpose of Staging Gloveboxes
 - Radiological Source Term
 - Design Objectives
- Modeling Process
 - Geometry
 - Calculation Setup
- Results
 - Selection of Neutron Shielding Material
 - Removal of Superfluous Shielding Features
 - Relocation of Neutron Shielding
- Conclusions

Introduction: Purpose of Staging Gloveboxes

- Support Increased Pit Production Mission
 - Provide easy access to feed material
 - Convenient staging of various parts
 - Convenient staging of SNM waste

Introduction: Radiological Source Term

Material

- MT-52 aged up to 50 years
- Up to 96 kg in gloveboxes at any given time

Occupancy

- Primary Workstation: 100 h per y
- Maintenance Workstations: 20 h per y
- Numerous operations in vicinity of gloveboxes

Introduction: Design Objectives

- Chapter 12 of Appendix A of P121, Radiological Protection
 - For a continuously occupied area, the design must maintain the average radiation exposures levels below an average of 0.5 mrem per hour and ALARA.
 - For noncountinuously occupied areas, the design must ensure the radiation exposure levels are ALARA and below the applicable standards [1,000 mrem per y]...
- ALARA Design Objective established based on purpose of gloveboxes and occupancy of nearby operations
 - 250 mrem per y

Modeling Process: Geometry

- Issues with provided CAD model:
 - Superfluous features such as bolts, fillets, handles, gaskets, etc. present which complicate radiation transport and meshing geometry.
 - Many small gaps or holes were present throughout which caused issues with meshing geometry

Modeling Process: Calculation Setup I

Mesh Generation:

Balancing act between number of voxels and accurate geometry representation.

Mesh Challenges

- Difficulty modeling air inside of glovebox due to presence of tiny complicated shapes.
- Attila personnel recommended filling glovebox with void to bypass issue.

Modeling Process: Calculation Setup II

- Cross Section Library:
 - Fendl
- Material Specification
 - PNNL-15870 Rev. 1: Compendium of Material Composition Data for Radiation Transport Modeling

Modeling Process: Calculation Setup III

- Source Defination:
 - Spectrum generated with version 6.1 of ORIGEN
- Reports
 - User specifies type of tally, location, DCFs, etc...

Results: Selection of Neutron Shielding Material

Tally	Polyethylene	Borated Polyethylene	Borated PMMA	Borated Water
1	100%	75%	85%	82%
2	100%	77%	85%	78%
3	100%	75%	85%	76%
4	100%	74%	86%	79%
5	100%	77%	86%	85%
6	100%	77%	86%	81%
7	100%	81%	83%	80%
8	100%	76%	85%	82%
9	100%	76%	94%	80%
Average	100%	76.4%	86.1%	80.3%

Results: Removal of Superfluous Shielding Features

- Original Design
- **■** 5% Borated Polyethylene
- Operator Windows Removed
- Gloveport/Window Shields Removed
- Gloveport/Window Shields and Operator Windows Removed

Results: Relocation of Neutron Shielding

- **■** 5% Borated Polyethylene
- Gloveport/Window Shields and Operator Windows Removed
- Thin Cubby Doors
- Thin Cubby Doors with External Shielding
- **Final Configuration**

Conclusions

- ALARA Design Objective
 - Dose Exceeded 250 mrem y⁻¹ but considered ALARA given constraints
- Possible Improvements
 - Add additional neutron Shielding

Original Design

Questions

